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Abstract
Purpose Advanced machine-learning (ML) techniques can potentially detect the entire spectrum of pathology through
deviations from a learned norm.
We investigated the utility of a weakly supervised ML tool to detect characteristic findings related to ischemic stroke in
head CT and provide subsequent patient triage.
Methods Patients having undergone non-enhanced head CT at a tertiary care hospital in April 2020 with either no
anomalies, subacute or chronic ischemia, lacunar infarcts of the deep white matter or hyperdense vessel signs were
retrospectively analyzed. Anomaly detection was performed using a weakly supervised ML classifier. Findings were
displayed on a voxel-level (heatmap) and pooled to an anomaly score. Thresholds for this score classified patients into
i) normal, ii) inconclusive, iii) pathological. Expert-validated radiological reports were considered as ground truth. Test
assessment was performed with ROC analysis; inconclusive results were pooled to pathological predictions for accuracy
measurements.
Results During the investigation period 208 patients were referred for head CT of which 111 could be included. Definite
ratings into normal/pathological were feasible in 77 (69.4%) patients. Based on anomaly scores, the AUC to differentiate
normal from pathological scans was 0.98 (95% CI 0.97–1.00). The sensitivity, specificity, positive and negative predictive
values were 100%, 40.6%, 80.6% and 100%, respectively.
Conclusion Our study demonstrates the potential of a weakly supervised anomaly-detection tool to detect stroke findings
in head CT. Definite classification into normal/pathological was made with high accuracy in >2/3 of patients. Anomaly
heatmaps further provide guidance towards pathologies, also in cases with inconclusive ratings.
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Introduction

Computed tomography (CT) of the head remains the pri-
mary modality in stroke imaging. The CT appearances of
brain ischemia vary considerably from obvious defects in
chronic ischemia to somewhat less obvious findings such as
hyperdense vessel sign (HVS) as a surrogate for occluding
thrombus. Thus, beyond the mere exclusion of hemorrhagic
stroke, the time-critical detection of CT findings associated
with ischemic stroke underlines how timely and qualified
interpretation of CT scans is a cornerstone of adequate pa-
tient management.

Continuing advances in the machine-learning (ML) do-
main are promising to relieve the conflict between rising ex-
amination counts and finite human resources such as read-
ing and interpretation time. In general, ML tools can learn
through supervised or unsupervised training, with the lat-
ter not needing explicit labels for each of the classes (i.e.
pathologies) it is supposed to detect. Most ML approaches
in medical imaging are however based on strongly super-
vised learning with the associated need for labor-intensive
pixel-wise image segmentation and the inherent limitation
that a system can only detect what it has previously “seen”.
Unsupervised or weakly supervised (only requiring global
class labels instead of pixel-level segmentations) systems,
on the other hand, offer the potential to learn the underly-
ing data distribution and thus flag pathology if a derivation
from this learned norm is found. In doing so, pathology is
defined as a deviation from an internalized normal refer-
ence and the whole spectrum, not just a predefined library,
of imaging anomalies could potentially be detected.

We have developed and evaluated a weakly supervised
anomaly detection system based on this principle of learn-
ing normal anatomy in head CT and flagging anomalies
linked to ischemic stroke as deviations from this norm.
Here we report first data on the performance of this sys-
tem in detecting the wide variety of ischemic stroke-related
CT findings and provide evidence for patient triage based
on this system.

Methods

Dataset

This retrospective analysis of a single tertiary care center
was approved by the local IRB, and the need for informed
consent was waived. To avoid selection bias, all patients
referred to the neuroradiology department of a university
hospital for non-enhanced head CT in April 2020 were con-
sidered eligible for this study. Of these, only scans showing
either normal brain, chronic ischemia, subacute ischemia,
lacunar deep white matter (DWM) infarcts or HVS were

considered. We decided to restrict the dataset to healthy
and stroke patients only in order to make a better assess-
ment of the disease-specific performance of the anomaly
detection tool.

For HVS, the retrieving period was extended to January
2020–April 2020 as this image finding without concomi-
tant anomalies was only rarely encountered. Only one scan/
patient was included and scans depicting >1 of the above-
mentioned pathologies or concurring pathologies were ex-
cluded to prevent class overlap. The same hardware (Philips
Ingenuity 5000, Philips Medical Systems, Best, The Nether-
lands) was used in all patients with local postprocessing
according to a manufacturer-specific iterative model recon-
struction (IMR3).

Data Processing and System Architecture

Anatomical correspondence of DICOM images to an in-
ternal atlas was established through image registration us-
ing the Advanced Normalization Tools (ANTs) framework
where rigid, affine and deformable alignments were used to
co-register every image to the template image of the internal
atlas [1]. The anomaly detection model was trained using
a weakly supervised machine learning strategy, which only
required a small, weakly annotated dataset. Importantly, no
pixel-level annotations (i.e. segmentations) were necessary
for this method. First, a (multivariate) density was estimated
over the anatomical regions of a diverse cohort of 191 nor-
mal scans from multivendor scanners (co-registered to the
above-mentioned template) used for training the algorithm.
Per-voxel Gaussian density distributions were fitted across
the co-registered training dataset. Finally, per-voxel upper
and lower bounds of the 90% confidence intervals were
calculated. Outlier voxels in test scans were identified by
comparing against the voxel-wise upper and lower bounds
of the confidence interval in the internal atlas.

Based on this estimated distribution, deviations from the
spatial distribution of HU densities were inferred and sum-
marized by an anomaly score ranging from 0 to 1. This
anomaly score is converted into classes (“normal”, “patho-
logical”, “inconclusive”) via thresholding. The thresholds
are scanner-specific and were calibrated on an indepen-
dent, mixed validation dataset (not used in this study) of
61 anonymized scans (globally labelled as “normal” or
“pathological”) from the local CT scanner to minimize the
false positive rate under the constraint of a false omission
rate of 0. Pathologies in the validation set were not restricted
to stroke-specific findings but further included various find-
ings, such as intracranial bleeding or masses.

In cases where the anomaly score was above a threshold
(calibrated with the in-house data as stated), the anomalous
finding was added to a heat map and the patient was la-
belled as “pathological”. Anomaly scores below a second
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threshold led to a label of “normal”, while anomaly scores
between the upper and lower threshold led to an “inconclu-
sive” rating.

At last, both the anomaly map showing the estimated
spatial deviations and patient-level prediction into normal/
pathological/inconclusive were displayed via a browser-
based user interface for review. On selection of a patient,
the scan with the anomaly detection overlaid as a heat map
was shown to the radiologist.

Ground Truth Assessment

The accuracy of the systems predictions was judged against
the radiological report, cosigned by at least two neuroradi-
ologists during clinical routine. Nomenclature of pathology
labels in the radiological reports corresponded to estab-
lished criteria: subacute ischemia was defined as ischemic
demarcation of a vascular territory in head CT with con-
comitant symptom onset 24h–1 week prior to the scan;
chronic ischemia was defined as brain parenchyma hy-
podensity within a vascular territory with concomitant
symptom onset >3 weeks prior to imaging [2]; lacunar
DWM infarcts were defined as defects in the DWM mea-
suring >15mm in diameter [3] and HVS was present if
attenuation within a proximal brain-supplying vessel was
>1.2 times that of the contralateral artery [4].

The individual heat map for each patient was compared
to the written report as well as the original DICOM images
in order to assess if anomalies had reliably been detected
or if false positive detections were made.

Normal scans correctly identified as such were defined
as true negative, while correct segmentation of a pathol-
ogy with subsequent labelling of the patient as pathological
was defined as true positive. Analogously, normal scans la-
belled as pathological were false positive and scans showing
a pathology wrongfully labelled as normal were considered
false negative. In scans with inconclusive ratings and patho-
logical findings on ground truth, segmentations were ana-
lyzed to verify whether the pathology in question had been
detected or had been missed.

Fig. 1 Flow-chart illustrating the triage performance of the algorithm. Definite ratings were given in 77/111 (69.4%) patients with no false-positives
or false-negatives in the case of definite ratings

Statistical Analysis

The diagnostic accuracy to discriminate between normal
and pathological head CTs was chosen as the primary end-
point and assessed through calculation of the area under
the receiver operator curve (AUC) based on the respective
anomaly scores, as described before [5]. To determine the
maximum potential effectiveness of the system, the Youden
index was calculated based on this AUC analysis [6].

Sensitivities, specificities, positive predictive values
(PPV), and negative predictive values (NPV) were further
calculated based on the patient labels given by the algo-
rithm and corresponding ground truth. To prevent inflation
of performance metrics and in line with the rationale of
a screening test, inconclusive labels were considered either
true positive (if disease was present on ground truth and
correctly detected by the voxel-wise segmentations) or
false positive (if disease was not present on ground truth)
[7]. Statistical analysis was performed using Graphpad
Prism Version 8.4.3 (Graphpad Software, San Diego, CA,
USA). P-values below 0.05 were considered statistically
significant.

Results

Study Cohort and Image Processing

Of 340 CT scans from 208 patients that were acquired dur-
ing the retrieving period, 111 scans (1 scan/patient; mean
age 66.1± 19.9 years, 56.7% male) could be included for
analysis.

Of these 32 were normal according to the ground truth
report and 79 showed stroke-related anomalies (HVS in
28 patients, subacute ischemia in 22 patients, chronic is-
chemia in 22 patients and lacunar DWM infarcts in 7 pa-
tients).

Definite patient-level ratings into normal or pathological
were provided in 77/111 scans, translating to a test yield
of 69.4%. Consequently, inconclusive ratings were given in
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Table 1 Given are the numbers of patients according to their labels with the respective share of definitely labelled (normal/pathological) and
inconclusively labelled scans for each class

Ground Truth All
(n= 111)

Definite rating
(n= 77)

Inconclusive rating
(n= 34)

p for difference % of definite ratings

Normal 32 13 19 0.14 40.6

Ischemia—chronic 22 20 2 <0.0001 90.9

Ischemia—subacute 22 20 2 <0.0001 90.9

HVS 28 19 9 0.002 67.9

Lacunary DWM
infarct

7 5 2 0.13 71.4

All pathological 79 64 15 <0.0001 81.0

HVS hyperdense vessel sign, DWM deep white matter

34/111 (30.6%) patients, of whom 15 (44.1%) had patho-
logical findings in ground truth and 19 (55.9%) had normal
scans (Fig. 1). In inconclusive ratings, the leading pathol-
ogy has been missed (i.e. not included in the voxel-level
anomaly segmentations) in 8/15 (53%) patients (as shown
in Figs. 1 and 3). Notably, definite ratings were given sig-
nificantly more often in pathological (81.0%) than normal
(40.6%) scans (p< 0.0001) (Table 1).

Performance Metrics

Based on the calculated anomaly scores, the diagnostic ac-
curacy to dichotomize between normal and pathological CT
scans was excellent with an area under the ROC of 0.98
(95% CI 0.97–1.00). As classification by the algorithm is
threshold-based, considerable differences could be noted
in the anomaly scores of normal 0.257± 0.249 vs. patho-
logical 0.912± 0.157 head CTs (p for difference <0.0001).
In scans with stroke findings, anomaly scores ranged from
0.966± 0.07 in chronic ischemia to 0.878± 0.215 in HVS.
Table 2 provides detailed information on diagnostic accu-
racy and anomaly scores.

In an effort to realistically reflect the utility of the
triage tool presented here, scans with inconclusive rat-
ings were considered either true positive (if disease was
present on ground truth) or false positive (if disease was
absent on ground truth), as stated in the methods. In

Table 2 Given is the diagnostic accuracy to discern normal scans from
scans with stroke findings and subgroups thereof

AUC (95% CI) Anomaly score

Normal – 0.257± 0.249

All pathological 0.979 (0.968–1.00) 0.912± 0.157a

Ischemia—chronic 0.997 (0.989–1.00) 0.966± 0.07a

Ischemia—subacute 0.986 (0.957–1.00) 0.934± 0.120a

HVS 0.981 (0.952–1.00) 0.878± 0.215a

Lacunar DWM infarct 0.991 (0.968–1.00) 0.899± 0.124a

HVS hyperdense vessel sign, DWM deep white matter, AUCArea under
the curve, CI Confidence interval
aSignificantly different from the anomaly scores of normal scans

Table 3 Given are the metrics used for calculating the diagnostic ac-
curacy in the study cohort

Ground truth

Algorithm output Stroke findings present Stroke findings absent

Pathological 64 0

Inconclusive 15 19

Normal 0 13

doing so, the sensitivity, specificity, positive predictive
value and negative predictive value was 100% ((64+ 15)/
(64+ 15+ 0)*100), 40.6% (13/(13+ 0+ 19)*100), 80.6%
((64+ 15)/(64+ 15+ 19)*100) and 100% (13/(13+ 0)*100),
respectively (input data for calculating the respective met-
rics are provided in Table 3).

In the subgroup analysis for the 77 scans with definite
ratings, categorization into true positive, false positive, true
negative and false negative was done for 64, 0, 13 and
0 patients, respectively. This translated to a sensitivity and
specificity of 100% each. As there was neither a scan with
stroke-related anomalies wrongfully labeled as normal nor
a normal scan wrongfully labeled as pathological, the neg-
ative and positive predictive values in the case of definite
ratings were both 100%.

Based on the ROC derived from the anomaly scores, an
optimal Youden index of 0.92 was found for an anomaly
score (upper cut-off) of 0.775. For the entire cohort, this
post hoc determination led to theoretical sensitivity and
specificity of 92.3% and 100%, respectively.

To illustrate the strengths and shortcomings of the sys-
tem we provide exemplary cases for correctly and incon-
clusively classified patients in Figs. 2 and 3.

Discussion

Ischemic stroke continues to be a leading cause of morbid-
ity and mortality worldwide [8]. As recommended by so-
cietal guidelines, head CT remains the primary workhorse
in neuroradiological emergency imaging [9]. Findings re-
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Fig. 2 Case examples for correct detection and patient labeling in subacute ischemia (cases 1 and 2), chronic ischemia (Case 3), lacunar DWM
infarcts (Case 4) and HVS (Case 5). Shown are the raw CT scans (top panel) with the corresponding anomaly maps (lower panel, segmentations
of anomalous findings in pink). DWM deep white matter, HVS hyperdense vessel sign, MCA middle cerebral artery, PCA posterior cerebral artery

lated to ischemic stroke cover a wide range of appearances,
ranging from hypodense defect areas in chronic ischemia
to hyperdensity of a brain-supplying artery on the basis of
thrombotic occlusion. Missing these anomalies can have
detrimental effects on patient outcome [10]. Quick detec-
tion of stroke-related findings is often essential to provide
adequate treatment and, in light of the conflict between the
efforts of commercial and public healthcare providers to
save costs on still expensive human resources, and the ris-
ing counts of imaging studies, computer-aided diagnostics
could in part relieve this conflict by providing a study list
hierarchically sorted according to the degree of imaging
abnormalities.

This study provides data on the utility of a weakly super-
vised stroke findings detection tool in a continuous series.
Definite predictions on the presence/absence of stroke-re-
lated findings could be made in �70% of individuals after
a processing time of roughly 1min. This went along with an
excellent diagnostic accuracy to discriminate normal scans
from those with ischemic stroke and a negative predictive
value of 100%.

Beyond patient-level predictions, the anomaly maps can
further guide a clinician towards relevant findings and have
the potential to increase the value of CT studies by com-
bining critical human interpretation with software-based
pathology flagging.

Continued threshold calibration further holds the promise
to improve classification completeness and calls for future
research into continuous learning approaches for this sys-
tem.

Automated detection of stroke-associated findings in
medical imaging is a field that has witnessed major de-
velopments in recent years and given rise to tools aimed
at detecting parameters such as demarcation of ischemic
parenchyma or mismatch volumes on CT perfusion maps
[11–14]. In detail, automated determination of ASPECTS,
a topographic scoring system that divides the MCA territory
into regions of interest and quantifies ischemic damage,
has even been suggested for selecting patients who could
benefit most from mechanical thrombectomy [15]. First
reports on the feasibility to extract the features of HVS
have furthermore emerged and added to strong evidence
for ML-based quantification of tissue at risk [13, 16]. Al-
beit impressive, the Achilles’ heel of most of these systems
remains their foundation on supervised class learning. This
necessitates class-specific training, potentially reducing
their robustness in atypical findings.

Turning around this pathology-centered approach is
promising to expand the spectrum and heterogeneity of
anomalies that can be detected. Therefore, our ML tool
tracks deviations from an internally acquired multidimen-
sional reference presentation, i.e. it learns the normal
anatomical variability of the human brain and defines
pathology as every state that is discrepant from this refer-
ence.

Systems not requiring manual feature encoding have
been implemented before but were either restricted to de-
tecting other entities (mainly intracranial hemorrhage) or
applied to a preselected patient cohort in an experimental
setting that does not reflect the unfiltered clinical workflow
[17, 18].
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Fig. 3 Case examples for inconclusive ratings. Cases 2 (HVS) and 3
(Thalamic Infarct) show scans where the underlying pathology was not
adequately detected in the anomaly maps (segmentations of anomalous
findings in pink). Case 1 shows partial detection of the underlying HVS
that did not reach the threshold for correct patient categorization as
pathological. DWM deep white matter, HVS hyperdense vessel sign,
MCA middle cerebral artery

The essence of a triage system is to categorize patients
based on the lack or presence of a condition and hence
channel resources towards the cases needing most urgent
attention. Ad initio, each patient with inconclusive results
thus needs to be considered test positive before proven oth-
erwise. We chose to follow this concept as it is most reflec-
tive of the clinical reality and prevents promotion of subop-
timal test strategies through overstating summary statistics.
On the other hand, this approach has highlighted the po-
tential to improve the system’s performance if the share
of inconclusive results can be reduced through continuous
learning mechanisms.

A limitation of this study is that the reported accuracy
measures are constrained by the Bayes theorem accord-
ing to which pre-test probabilities affect post-test proba-

bilities. This means that our study setting in a university
hospital (where patients with low clinical pre-test proba-
bility for stroke are in many cases investigated with MRI)
has led to relatively low counts of healthy controls and
a high proportion of stroke patients. This could lead to
a distortion of accuracy measures in hospitals having dif-
fering patient demographics. Also, in order to specifically
assess the diagnostic accuracy to detect stroke-related find-
ings, we limited our study cohort to patients with normal
CT scans and ischemic stroke, only. One can however spec-
ulate that the architecture of our system should be able to
detect simultaneously occurring intracranial pathologies as
this would constitute an even wider deviation from the in-
ternalized reference atlas. Second, generalizability to cen-
ters with other hardware equipment should be explored and
was not considered in this study that aimed to reflect the
clinical workflow at one site. Not all imaging stigmata in-
cluded in this study carry the same clinical relevance. As
such, detection of subacute ischemia entails more timely
work-up and secondary prophylaxis than depiction of DWM
infarcts; however, we prioritized categorization of multi-
ple ischemia-related CT findings in order to move away
from single class detection systems potentially encounter-
ing weaknesses in more heterogenous datasets. It should
be said, however, that hyperacute stroke (defined as 0–24h
after symptom onset, as in [2]) were not included in this
study given that our institute-specific imaging protocol in
such cases includes CT perfusion data and hence unbiased
reports of nonenhanced head CTs were not available for this
unselected retrospective series. Notable performance drops
should nonetheless be expected in such cases as the mech-
anism of the system investigated here is based on quanti-
tative derivations within image data, and these derivations
can be very subtle in (hyper)acute stroke. This becomes
evident in case 1 (Fig. 2) where only the central, most hy-
podense ischemic areas in the right MCA territory have
been segmented on the anomaly maps while a large part of
the cortical/subcortical parenchyma has not been flagged as
anomalous by the algorithm. Next, the fact that a radiolo-
gist’s attention is guided towards the areas highlighted in
the anomaly map could promote “satisfaction of search”.
Anomaly maps should only be used as a guide towards
pathology in scans flagged as pathological, as the high sen-
sitivity of the system presented here will inevitably lead
to the segmentation of a small proportion of inconspicuous
voxels. This is highlighted by the anomaly score of normal
CT scans that was 0.257, instead of zero as it would be in
a perfectly calibrated setting. The influence of this noise
in anomaly maps has been mitigated by using a threshold-
based model for classification on the patient-level. Finally,
the fact that scans showing pathology had a notably smaller
share of inconclusive ratings when compared to normal
scans underlines how the system was tuned in an effort
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to minimize false negative labels at the cost of reducing the
share of definite predictions. While this undeniably leads to
second look verifications of indeterminately labeled scans,
accepting a relevant share of false positive classifications
is an inevitable compromise to not miss any pathological
scans.

In conclusion, we report on the potential utility of
a weakly supervised anomaly detection system for identi-
fying ischemic stroke-related CT findings in an unselected
patient cohort. We noted a high accuracy to discriminate
patients with subacute ischemia, chronic ischemia, lacunar
DWM infarcts and HVS from healthy controls. Definite
predictions into normal/pathological were given in close to
70% of scans, allowing adequate triage in an unselected
dataset with conspicuous stroke-related findings. Through
provision of patient-level labels and detailed anomaly seg-
mentations, clinicians could in the future be provided with
study lists that hierarchically sort patients according to the
degree of imaging abnormalities.
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