Skip to main content
Log in

Pathways to Titanium Martensite

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The structural relationship between the parent and product phases in the martensitic transformation from the parent β phase is described. The atomic movements leading to the martensite are accomplished by a long-range shear {112} < 111 > that transforms the parent to the product lattice and a short-wavelength displacement or shuffle {110} < 110 > that induces the correct stacking. The microstructures arising out of these paths depend on which of these modes initiates the transformation. When the shear precedes the shuffle, conventional martensite forms as dislocated laths or internally twinned plates. A signature of the {110} < 110 > shuffle that follows or accompanies the shear is present in both cases as stacking fault-related domains. The shuffle displacement precedes the shear with increasing β stabilizer addition, resulting in a nanodispersion of a structure with orthorhombic symmetry, which we have designated as O′. Al, Sn, Zr and O additions promote the shuffle. The O′ dispersion acts as embryos for the formation of nanomartensite on cooling or with the application of stress. The resulting continuous and controlled strain incorporation into the lattice within the constrained nanoembryos results in nonlinear superelasticity or the invar and elinvar effects. The stability of the bcc parent is discussed in terms of phonon mode or related elastic constant softening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S. Banerjee and P. Mukhopadhyay, Phase Transformations Examples from Titanium and Zirconium Alloys, Elsevier Science, 2007. https://www.sciencedirect.com/bookseries/pergamon-materials-series/vol/12/suppl/C.

  2. W.G. Burgers, Physica. 1 (1934) 561. https://doi.org/10.1016/S0031-8914(34)80244-3.

    Article  CAS  Google Scholar 

  3. R. Shi, N. Ma, Y. Wang, Acta Mater. 60 (2012) 4172. https://doi.org/10.1016/j.actamat.2012.04.019.

    Article  CAS  Google Scholar 

  4. M. Abdel-Hady, K. Hinoshita, M. Morinaga, Scr. Mater. 55 (2006) 477. https://doi.org/10.1016/j.scriptamat.2006.04.022.

    Article  CAS  Google Scholar 

  5. Y. Fukui, T. Inamura, H. Hosoda, K. Wakashima, S. Miyazaki, Mater. Trans. 45 (2004) 1077. https://doi.org/10.2320/matertrans.45.1077.

    Article  CAS  Google Scholar 

  6. E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, S. Hanada, Mater. Trans. 43 (2002) 2978. https://doi.org/10.2320/matertrans.43.2978.

    Article  CAS  Google Scholar 

  7. S. Miyazaki, H.Y. Kim, H. Hosoda, Mater. Sci. Eng. A. 438–440 (2006) 18. https://doi.org/10.1016/j.msea.2006.02.054.

    Article  CAS  Google Scholar 

  8. R.H. Ericksen, R. Taggart, D.H. Polonis, Acta Metall. 17 (1969) 553. https://doi.org/10.1016/0001-6160(69)90114-X.

    Article  CAS  Google Scholar 

  9. P.M. Hammond and C. Kelly, Martensitic transformations in titanium alloys, in: R.I Jaffee, R.I. and N.E. Promisel (Ed.), Pergamon-Elsevier Science Ltd, (1970) pp. 659 https://doi.org/10.1016/C2013-0-01574-5

  10. K.M. Knowles, and D.A. Smith, Acta Metall. 29 (1981) 1445. https://doi.org/10.1016/0001-6160(81)90179-6.

    Article  CAS  Google Scholar 

  11. K.M. Knowles, Proceedings of the Royal Society of London. Series A, Mathematical and Published by: Royal Society Stable 380 (1982) 187.

  12. D. Banerjee, K. Muraleedharan, J.L. Strudel, Philos. Mag. A. 77 (1998) 299. https://doi.org/10.1080/01418619808223754.

    Article  Google Scholar 

  13. M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Acta Mater. 59 (2011) 6208. https://doi.org/10.1016/j.actamat.2011.06.015.

    Article  CAS  Google Scholar 

  14. Y. Zheng, R.E.A. Williams, S. Nag, R. Banerjee, H.L. Fraser, D. Banerjee, Scr. Mater. 116 (2016) 49. https://doi.org/10.1016/j.scriptamat.2016.01.024.

    Article  CAS  Google Scholar 

  15. Y. Zheng, D. Banerjee, H.L. Fraser, Scr. Mater. 116 (2016) 131. https://doi.org/10.1016/j.scriptamat.2016.01.044.

    Article  CAS  Google Scholar 

  16. Y. Zheng, T. Alam, R. Banerjee, D. Banerjee, H.L. Fraser, Scr. Mater. 152 (2018) 150. https://doi.org/10.1016/j.scriptamat.2018.04.030.

    Article  CAS  Google Scholar 

  17. D. Banerjee, A.K. Gogia, T.K. Nandi, V.A. Joshi, Acta Metall. 36 (1988) 871. https://doi.org/10.1016/0001-6160(88)90141-1.

    Article  CAS  Google Scholar 

  18. Y. Zheng, S. Antonov, Q. Feng, R. Banerjee, D. Banerjee, H.L. Fraser, Scr. Mater. 176 (2020) 7. https://doi.org/10.1016/j.scriptamat.2019.09.027.

    Article  CAS  Google Scholar 

  19. Q. Liang, D. Wang, Y. Zheng, S. Zhao, Y. Gao, Y. Hao, R. Yang, D. Banerjee, H.L. Fraser, Y. Wang, Acta Mater. 186 (2020) 415. https://doi.org/10.1016/j.actamat.2019.12.056.

    Article  CAS  Google Scholar 

  20. N. Nakanishi, A. Nagasawa, Y. Murakami. J. Phys. Colloques 43 (1982) C4–35.

    Article  Google Scholar 

  21. A. Nagasawa, N. Nakanishi, and K. Enami, Phils. Mag. A 43, 1345. https://doi.org/10.1080/01418618108239514

  22. P.A. Fleury, Annu. Rev. Mater. Sci. 6 (1976) 157.

    Article  CAS  Google Scholar 

  23. W. Petry, M. Alba, Phys. Rev. 43 (1991).

  24. Y. Hanlumyuang, R.P. Sankaran, M.P. Sherburne, J.W. Morris, D.C. Chrzan, Phys. Rev. B - Condens. Matter Mater. Phys. 85 (2012) 1. https://doi.org/10.1103/PhysRevB.85.144108.

    Article  CAS  Google Scholar 

  25. Y. Ji, S. Ren, D. Wang, Y. Wang, X. Ren, Springer Ser. Mater. Sci. 275 (2018) 183. https://doi.org/10.1007/978-3-319-96914-5_7.

    Article  CAS  Google Scholar 

  26. X. Ren, Phys. Status Solidi Basic Res. 251 (2014) 1982. https://doi.org/10.1002/pssb.201451351.

    Article  CAS  Google Scholar 

  27. J. He, D. Li, W. Jiang, L. Ke, G. Qin, Y. Ye, Q. Qin, D. Qiu, Materials (Basel) 12 (2019). https://doi.org/10.3390/ma12020321.

  28. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Science 300 (2003) 464. https://doi.org/10.1126/science.1081957.

    Article  CAS  Google Scholar 

  29. Y.L. Hao, H.L. Wang, T. Li, J.M. Cairney, A. V. Ceguerra, Y.D. Wang, Y. Wang, D. Wang, E.G. Obbard, S.J. Li, R. Yang, J. Mater. Sci. Technol. 32 (2016) 705. https://doi.org/10.1016/j.jmst.2016.06.017.

    Article  CAS  Google Scholar 

  30. Y. Wang, D. Wang, S. Hou, Y. Wang, X. Ding, S. Ren, X. Ren, Acta Mater. 66 (2014) 349. https://doi.org/10.1016/j.actamat.2013.11.022.

    Article  CAS  Google Scholar 

  31. L. Zhang, D. Wang, X. Ren, Y. Wang, Sci. Rep. 5 (2015) 1. https://doi.org/10.1038/srep11477.

    Article  CAS  Google Scholar 

  32. Y.C. Xu, C. Hu, L. Liu, J. Wang, W.F. Rao, J.W. Morris, A.G. Khachaturyan, Acta Mater. 171 (2019) 240. https://doi.org/10.1016/j.actamat.2019.04.027.

    Article  CAS  Google Scholar 

  33. J. Zhu, Y. Gao, D. Wang, T.Y. Zhang, Y. Wang, Acta Mater. 130 (2017) 196. https://doi.org/10.1016/j.actamat.2017.03.042.

    Article  CAS  Google Scholar 

  34. J. Zhu, D. Wang, Y. Gao, T.Y. Zhang, Y. Wang, Mater. Today. 33 (2020) 17. https://doi.org/10.1016/j.mattod.2019.10.003.

    Article  CAS  Google Scholar 

  35. J. Zhu, H.H. Wu, X.S. Yang, H. Huang, T.Y. Zhang, Y. Wang, S.Q. Shi, Acta Mater. 181 (2019) 99. https://doi.org/10.1016/j.actamat.2019.09.044.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DB acknowledges the INSA senior scientist fellowship. YW acknowledges financial support from the National Science Foundation, USA, under Grant DMR-1923929. YZ appreciates financial support from National Science Foundation, Grant CMMI-2122272. RB and HLF acknowledge support by the National Science Foundation (NSF), Division of Materials Research (DMR) under Grants DMR-1905844 and DMR-1905835.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Banerjee, R., Wang, Y. et al. Pathways to Titanium Martensite. Trans Indian Inst Met 75, 1051–1068 (2022). https://doi.org/10.1007/s12666-022-02559-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02559-9

Keywords

Navigation