Skip to main content
Log in

Martensitic Transformation in Low-Carbon Steels

  • Published:
Metal Science and Heat Treatment Aims and scope

Isothermal and thermokinetic martensitic transformations in low-carbon martensitic steels have been studied. Amodel is proposed that relates the mechanical state of the austenite, as dependent on the parameters of thermal treatment and the law of the grain size distribution, to the volume fraction of transformed martensite. Physical constants of the transformation are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. V. Kurdyumov and B. Ya. Lyubov, Kinetic Theory of Phase Transformations [in Russian], Metallurgiya, Moscow (1966), 264 p.

  2. Ya. S. Umanskii, B. N. Finkel’shtein, M. E. Blanter, et al., Physical Principles of Metallography [in Russian], GONTI, Moscow (1955), 724 p.

  3. M. P. Kashchenko and V. G. Chashchina, Dynamic Theory of γ – α Martensitic Transformation in Iron Alloys and Solution of the Problem of Critical Grain Size [in Russian], Regular and Chaotic Dynamics Research Center – Izhevsk Institute of Computer Investigations, Moscow – Izhevsk (2010), 132 p.

    Google Scholar 

  4. V. I. Izotov, “Morphology and crystal geometry of lath (massive) martensite,” Fiz. Met. Metalloved., 34(1), 123 – 132 (1972).

    Google Scholar 

  5. V. M. Schastlivtsev, L. B. Blind, D. P. Rodionov, and I. L. Yakovleva, “Lath martensite structure in structural steels,” Fiz. Met. Metalloved., 66(4), 759 – 769 (1988).

    Google Scholar 

  6. Yu. G. Andreev, L. N. Devchenko, E. I. Zarkova, and M. A. Shtremel’, “Crystal geometry of martensitic shift in a large lath,” Fiz. Met. Metalloved., 56(4), 783 – 790 (1983).

    Google Scholar 

  7. M. A. Shtremel’, Yu. G. Andreev, and D. A. Kozlov, “Lath martensite structure and strength,” Metalloved. Term. Obrab. Met., No. 4, 10 – 15 (1999).

  8. V. M. Schastlivtsev, “Martensite structure peculiarities in structural steels,” Fiz. Met. Metalloved., 33(2), 326 – 334 (1972).

    Google Scholar 

  9. L. V. Karabasova, M. N. Spasskii, and M. A. Shtremel’, ”Hierarchy of low-carbon martensite structures,” Fiz. Met. Metalloved., 37(6), 1238 – 1248 (1974).

    Google Scholar 

  10. A. F. Edneral, V. I. Izotov, L. M. Kleiner, et al., ”Low-carbon martensitic steels,” in: Problems of Metal Science and Physical Metallography [in Russian], Metallurgiya, Moscow (1972), pp. 123 – 134.

  11. L. M. Kleiner, A. A. Shatsov, D. M. Larinin, and M. G. Zakirova, ”Low-carbon martensite structure and structural strength of martensitic steels,” Perspekt. Mater., No. 1, 59 – 67 (2011).

  12. Yu. F. Titovets, N. Yu. Zolotarevskii, A. N. Samoilov, et al., “Modeling the influence of austenite grain size change on the kinetics of γ → α transformation,” Metalloved. Term. Obrab. Met., No. 2, 29 – 36 (2010).

  13. M. Umemoto, E. Yoshitake, and I. Taniura, “The morphology of martensite in Fe – C, Fe – Ni – C, and Fe – Cr – C alloys,” J. Mater. Sci., 18(10), 2893 – 2904 (1983).

    Article  Google Scholar 

  14. D. A. Mirzaev and K. Yu. Okishev, “Kinetic theory of lath martensite formation,” Vestn. Yuzh. Ural. Gos. Univ., No. 21, 9 – 14 (2007).

  15. D. A. Mirzaev, K. Yu. Okishev, V. M. Schastlivtsev, and I. L. Yakovleva, “Kinetics of bainite and lath martensite formation: I. Effect of lath structure,” Fiz. Met. Metalloved., 90(5), 55 – 65 (2000).

    Google Scholar 

  16. D. A. Mirzaev, K. Yu. Okishev, V. M. Schastlivtsev, and I. L. Yakovleva, “Kinetics of bainite and lath martensite formation: II. Effect of incomplete transformation,” Fiz. Met. Metalloved., 90(5), 66 – 74 (2000).

    Google Scholar 

  17. V. A. Lobodyuk and E. I. Éstrin, Martensitic Transformations [in Russian], Fizmatlit, Moscow (2009), 352 p.

  18. D. A. Mirzaev and K. Yu. Okishev, “Lath martensite formation in iron–nickel steels,” Metalloved. Term. Obrab. Met., No. 9, 7 – 14 (2014).

  19. Donghwi Kim, Seok-Jae Lee, and Bruno C. de Cooman, “Microstructure of low-C steel isothermally transformed in the M s to M f temperature range,” Metall. Mater. Trans. A, 43, 4967 – 4983 (2012).

    Article  Google Scholar 

  20. T. Y. Hsu (Xu Zuyao), “Carbon diffusion and kinetics during the lath martensite formation,” J. Phys. IV France, 5, C8-351 – C8-354 (1995).

  21. P. O. Bykova, L. M. Kleiner, A. A. Shatsov, and D. M. Larinin, “Modeling isothermal transformation of low-carbon austenite,” Meterialovedenie, No. 5, 10 – 14 (2013).

  22. M. E. Blanter, Theory of Heat Treatment [in Russian], Metallurgiya, Moscow (1984), 328 p.

    Google Scholar 

  23. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1976), 272 p.

    Google Scholar 

  24. S. L. Alhnazarova and V. V. Kafarov, Methods of Experiment Organization in Chemical Technology [in Russian], Vysshaya Shkola, Moscow (1985), 319 p.

    Google Scholar 

  25. I. V. Ryaposov, L. M. Kleiner, A. A. Shatsov, and E. A. Noskova, “Grain and lath martensite structure formation by thermal cycling in low-carbon martensitic steels,” Metalloved. Term. Obrab. Met., No. 9, 33 – 39 (2008).

  26. I. V. Ryaposov, L. M. Kleiner, and A. A. Shatsov, “Volume nanostructurization of low-carbon martensitic steels by heat treatment,” Metalloved. Term. Obrab. Met., No. 9, 9 – 14 (2012).

    Google Scholar 

  27. J. Christian, The Theory of Transformations in Metals and Alloys, Part I: Equilibrium and General Kinetic Theory, Pergamon Press, Oxford (1978).

    Google Scholar 

  28. H. K. Bhadeshia, Bainite in Steels, Cambridge University Press, London (2001), 454 p.

    Google Scholar 

  29. L. M. Kleiner, D. M. Larinin, L. V. Spivak, and A. A. Shatsov, “Phase and structure transformations in low-carbon martensitic steels,” Fiz. Met. Metalloved., 108(2), 161 – 168 (2009).

    Google Scholar 

  30. D. L. Merson (ed.), Advanced Materials: Structure and Methods of Investigation (Learning Aid) [in Russian], TGU – MISiS, Togliatti – Moscow (2006), 536 p.

  31. N. J. Petch, in: Proc. Int. Conf. on Atomic Mechanisms of Fracture (April 12 – 16, 1959, Swampscott, MA, United States).

  32. V. N. Arzamasov, V. A. Brostrem, N. A. Bushe, et al. (eds.), Construction Materials (A Handbook) [in Russian], Mashinostroenie, Moscow (1990). 688 p.

    Google Scholar 

  33. W. Dahl and W. Anton (eds.), Static Strength and Fracture Mechanics of Steels [in German], Verlag Stahleisen GmbH, Dusseldorf (1983).

    Google Scholar 

  34. A. M. Borzdyka and L. B. Gertsov, Stress Relaxation in Metals and Alloys [in Russian], Metallurgiya, Moscow (1978), 272 p.

    Google Scholar 

Download references

This work was supported by the Ministry of Education and Science of the Russian Federation (Agreement No. 02.G25.31.0068 of 23.05.2013) in the framework of investigations according to Governmental Order No. 218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shatsov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 8 – 14, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezin, S.K., Shatsov, A.A., Bykova, P.O. et al. Martensitic Transformation in Low-Carbon Steels. Met Sci Heat Treat 59, 479–485 (2017). https://doi.org/10.1007/s11041-017-0175-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0175-0

Key words

Navigation