Skip to main content
Log in

Molecular characterization and expression analysis of Lily-type lectin (SmLTL) in turbot Scophthalmus maximus, and its response to Vibrio anguillarum

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A full-length lily-type lectin (SmLTL) was identified from turbot (Scophthalmus maximus) in this study. By searching database for protein identification and function prediction, SmLTL were confirmed. The full-length cDNA of SmLTL is composed of 569 bp and contains a 339 bp ORF that encodes 112 amino acid residues. The SmLTL peptide is characterized by a specific β-prism architecture and contains three mannose binding sites in a three-fold internal repeat between amino acids 30–99; two of the repeats share the classical mannose binding domain (QxDxNxVxY) while the third binding site was similar to other fish-specific binding motifs (TxTxGxRxV). The primary, secondary, and tertiary structures of SmLTL were predicted and analyzed, indicating that the SmLTL protein was hydrophilic, contained 5.36% α-helices, 39.29% extended strands, 16.07% β-folds, and 39.29% random coils, and three β-folds. Quantitative realtime polymerase chain reaction (qPCR) analysis revealed that the SmLTL mRNA was abundantly expressed in skin, gill, and intestine. Low levels of SmLTL expression were observed in other tissues. The expression of SmLTL in gill, skin and intestine increased at mRNA level after stimulation of Vibrio anguillarum, our results suggest that SmLTL serve as the first line of defence against microbial infections and play a pivotal role in the innate mucosal immune system. The current study indicates that SmLTL is a member of the lilytype lectin family and the information reported here will provide an important foundation for future research on the role of this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afolabi-Balogun N B, Inuwa H M, Ishiyaku M F, Bakareodunoola M T, Nok A J. 2012. Isolation and characterization of a mannose-binding insecticidal lectin gene from Allium sativum (garlic) and its putative role in insect resistance using bioinformatics tools. Infect. Genet. Evol., 12 (7): 1508–1512.

    Article  Google Scholar 

  • Alexander J B, Ingram G A. 1992. Noncellular nonspecific defense mechanism of fish. Annual Review of Fish Diseases, 2: 249–279.

    Article  Google Scholar 

  • Arasu A, Kumaresan V, Sathyamoorthi A, Palanisamy R, Prabha N, Bhatt P, Roy A, Thirumalai M K, Gnaname A J, Pasupuleti M, Marimuthu K, Arockiaraj J. 2013. Fish lily type lectin-1 contains β-prism architecture: immunological characterization. Mol. Immunol., 56 (4): 497–506.

    Article  Google Scholar 

  • Barre A, Bourne Y, Van Damme E J M, Peumans W J, Rougé P. 2001. Mannose-binding plant lectins: different structural scaffolds for a common sugar-recognition process. Biochimie, 83 (7): 645–651.

    Article  Google Scholar 

  • Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, Bento P, Da Silva C, Labadie K, Alberti A, Aury J M, Louis A, Dehais P, Bardou P, Montfort J, Klopp C, Cabau C, Gaspin C, Thorgaard G H, Boussaha M, Quillet E, Guyomard R, Galiana D, Bobe J, VolffJ N, Genêt C, Wincker P, Jaillon O, Crollius H R, Guiguen Y. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun., 5: 3657.

    Article  Google Scholar 

  • Bhat G G, Shetty K N, Nagre N N, Neekhra V V, Lingaraju S, Bhat R S, Inamdar S R, Suguna K, Swamy B M. 2010. Purification, characterization and molecular cloning of a monocot mannose-binding lectin from Remusatia vivipara with nematicidal activity. Glycoconj. J., 27 (3): 309–320.

    Article  Google Scholar 

  • Chandra N R, Ramachandraiah G, Bachhawat K, Dam T K, Surolia A, Vijayan M. 1999. Crystal structure of a dimeric mannose-specific agglutinin from garlic: quaternary association and carbohydrate specificity. J. Mol. Biol., 285 (3): 1157–1168.

    Article  Google Scholar 

  • Chen S R., Tang J X, Cheng J M, Li J, Jin C, Li X Y, Deng S L, Zhang Y, Wang X X, Liu Y X. 2015. Loss of gata4 in sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget, 6 (35): 37012–37027.

    Google Scholar 

  • Chen Y D, Zhou S H, Jiang Z Q, Wang X L, Liu Y. 2016. Chemokine receptor CXCR3 in turbot (Scophthalmus maximus): cloning, characterization and its responses to lipopolysaccharide. Fish Physiol. Biochem., 42 (2): 659–671.

    Article  Google Scholar 

  • Chi H, Hu Y H. 2016. Stomatin-like protein 2 of turbot Scopthalmus maximus: gene cloning, expression profiling and immunoregulatory properties. Fish & Shellfish Immun., 49: 436.

    Article  Google Scholar 

  • Ding J J, Bao J K, Zhu D Y, Zhang Y, Wang D C. 2008. Crystallization and preliminary x-ray diffraction analysis of a novel mannose-binding lectin with antiretroviral properties from Polygonatum cyrtonema hua. Protein Pept. Lett., 15 (4): 411–414.

    Article  Google Scholar 

  • Dodd R B, Drickamer K. 2001. Lectin-like proteins in model organisms: implications for evolution of carbohydratebinding activity. Glycobiology, 11 (5): 71R-79R.

    Article  Google Scholar 

  • Gao C B, Fu Q, Zhou S, Song L, RenY C, Dong X Y, Su B F, Li C. 2016. The mucosal expression signatures of g-type lysozyme in turbot (Scophthalmus maximus) following bacterial challenge. Fish Shellfish Immunol., 54: 612–619.

    Article  Google Scholar 

  • Goel C, Barat A, Pande V, Sahoo P K. 2015. Molecular cloning and characterization of mannose binding lectin homologue from snow trout (Schizothorax richardsonii). The protein J., 34 (1): 1–8.

    Article  Google Scholar 

  • Goto-Nance R, Watanabe Y, Kamiya H, Ida H. 1995. Characterization of lectins feom the skin mucus of the Lonach Misgurnus anguillicaudatus. Fish. Sci., 61 (1): 137–140.

    Article  Google Scholar 

  • Guardiola F A, Cuesta A, Arizcun M, Meseguer J, Esteban M A. 2014. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata). Fish Shellfish Immun ol., 36 (2): 545–551.

    Article  Google Scholar 

  • Hester G, Wright C S. 1996. The mannose-specific bulb lectin from Galanthus nivalis (snowdrop) binds mono-and dimannosides at distinct sites. Structure analysis of refined complexes at 2.3 Å and 3.0 Å resolution. J. Mol. Biol., 262 (4): 516–531.

    Google Scholar 

  • Hoffmann J A, Kafatos F C, Janeway C A, Ezekowitz R A B. 1999. Phylogenetic perspectives in innate immunity. Science, 284 (5418): 1313–1318.

    Article  Google Scholar 

  • Huang M M, Song X Y, Zhao J M, Mu C K, Wang L L, Zhang H, Zhou Z, Liu X L, Song L S. 2013. A C-type lectin (AiCTL-3) from bay scallop Argopecten irradians with mannose/galactose binding ability to bind various bacteria. Gene, 531 (1): 31–38.

    Article  Google Scholar 

  • Huang Z H, Ma A J, Wang X A. 2011. The immune response of turbot, Scophthalmus maximus (L.), skin to high water temperature. J. Fish Dis., 34 (8): 619–627.

    Article  Google Scholar 

  • Ingram G A. 1980. Substances involved in the natural resistance of fish to infection—a review. J. Fish Biol., 16 (1): 23–60.

    Article  Google Scholar 

  • Kai G Y, Zhao L X, Zheng J G, Zhang L, Miao Z Q, Sun X F, Tang K X. 2004. Isolation and characterization of a new mannose-binding lectin gene from Taxus media. J. Biosci., 29 (4): 399–407.

    Article  Google Scholar 

  • Kamiya H, Muramoto K, Goto R. 1988. Purification and properties of agglutinins from conger eel, Conger myriaster (Brevoort), skin mucus. Dev. Comp. Immunol., 12 (2): 309–318.

    Article  Google Scholar 

  • Ke J Y, Chen Y S, Rao X Z. 2005. Lectins and its biological function. J. Ningde Teach. Coll. Nat. Sci., 17 (1): 19–22. (in Chinese with English abstract)

    Google Scholar 

  • Khong H K, Kuah M K, Jaya-Ram A, Shu-Chien A C. 2009. Prolactin receptor mRNA is upregulated in discus fish (Symphysodon aequifasciata) skin during parental phase. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 153: 18–28.

    Article  Google Scholar 

  • Kim B S, Nam B H, Kim J W, Park H J, Song J H, Park C I. 2011. Molecular characterisation and expression analysis of a fish-egg lectin in rock bream, and its response to bacterial or viral infection. Fish & Shellfish Immun., 31 (31): 1201–1207.

    Article  Google Scholar 

  • Kyte J, Doolittle R F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 157 (1): 105–132.

    Article  Google Scholar 

  • Leong J S, Jantzen S G, von Schalburg K R, Cooper G A, Messmer A M, Liao N Y, Munros, Moore R, Holt R A, Jones S J M, Davidson W S, Koop B F. 2010. Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a posttetraploidization genome. BMC Genomics, 11 (1): 279.

    Article  Google Scholar 

  • Lin J Y, Hu G B, Yu C H, Li S, Liu Q M, Zhang S C. 2015. Molecular cloning and expression studies of the adapter molecule myeloid differentiation factor 88 (MyD88) in turbot (Scophthalmus maximus). Dev. Comp. Immunol., 52 (2): 166–171.

    Article  Google Scholar 

  • Liu F Q, Su B F, Gao C B, Zhou S, Song L, Tan F H, Dong X Y, Ren Y C, Li C. 2016. Identification and expression analysis of TLR2 in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. Fish Shellfish Immunol., 55: 654–661.

    Article  Google Scholar 

  • Luo Y, Xu X, Liu J, Li J, Sun Y, Liu Z, Liu J Z, Van Damme E, Balzarini J, Bao J. 2007. A novel mannose-binding tuber lectin from Typhonium divaricatum (L.) Decne (family Araceae) with antiviral activity against HSV-II and antiproliferative effect on human cancer cell lines. BMB Rep., 40 (3): 358–367.

    Article  Google Scholar 

  • Ma A J, Guo J L, Wang X A, Huang Z H. Wang T, Shang X M. 2014. Family selection and estimation of disease resistance in turbot, Scophthalmus maximus. J. Fish. Sci. China, 21 (3): 484–493. (in Chinese with English abstract)

    Google Scholar 

  • Ma A J, Huang Z H, Wang X A. 2013. Changes in protein composition of epidermal mucus in turbot Scophthalmus maximus (L.) under high water temperature. Fish Physiol. Biochem., 39 (6): 1411–1418.

    Article  Google Scholar 

  • Meng Y Q, Liu X F, Liu Y, Chang X Q, Wang X L, Jiang Z Q. 2013. Chemokine receptor genes CCR3 and CCR9 in turbot (Scophthalmus maximus): cloning and tissue distribution. J. Fish. Sci. China, 20 (5): 918–930. (in Chinese with English abstract)

    Google Scholar 

  • Moore J D, Ototake M, Nakanishi T. 1998. Particulate antigen uptake during immersion immunisation of fish: the effectiveness of prolonged exposure and the roles of skin and gill. Fish Shellfish Immunol., 8 (6): 393–408.

    Article  Google Scholar 

  • Park H J, Jeong J M, Bae J S, Kim J W, An C M, Min B H, Kim S Y, Myeong J I, Hwang H K, Park C I. 2016. Molecular cloning and expression analysis of a new lily-type lectin in the rock bream, Oplegnathus fasciatus. Dev. Comp. Immunol., 65: 25–30.

    Article  Google Scholar 

  • Pereira P R, Winter H C, Verícimo M A, Meagher J L, Stuckey J A., Goldstein I J, Paschoalin V M F, Silva J T. 2014. Structural analysis and binding properties of isoforms of tarin, the gna-related lectin from Colocasia esculenta. BBA-Proteins proteome., 1854 (1): 20–30.

    Article  Google Scholar 

  • Sharon N, Lis H. 2004. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 14 (11): 53R–62R.

    Article  Google Scholar 

  • Shephard K L. 1994. Functions for fish mucus. Rev. Fish Biol. Fish., 4 (4): 401–429.

    Article  Google Scholar 

  • Shiomi K, Uematsu H, Ito H, Yamanaka H, Kikuchi T. 1990. Purification and properties of a lectin in the skin mucus of the dragonet Repomucenus richardsonii. Nippon Suisan Gakk., 56 (1): 119–123.

    Article  Google Scholar 

  • Shiomi K, Uematsu H, Yamanaka H, Kikuchi T. 1989. Purificatioin and characterization of a galactose-binding lectin from the skin mucus of the conger eel Conger myriaster. Comp. Biochem. Phys iol. B Comp. Biochem., 92 (2): 255–261.

    Article  Google Scholar 

  • Smeets K, Van Damme E J M, Verhaert P, Barre A, Rougé P, Van Leuven F, Peumans W J. 1997. Isolation, characterization and molecular cloning of the mannose binding lectins from leaves and roots of garlic (Allium sativum L.). Plant Mol. Biol., 33 (2): 223–234.

    Article  Google Scholar 

  • Spitzer R H, Koch E A. 1998. Hagfish skin and slime glands. In: Jørgensen J M, Lomholt J P, Weber R E, Malte H eds. The Biology of Hagfishes. Springer, Netherlands. p.109–132.

    Chapter  Google Scholar 

  • Suzuki Y, Tasumi S, Tsutsui S, Okamoto M, Suetake H. 2003. Molecular diversity of skin mucus lectins in fish. Comp. Biochem. Phys iol. B Biochem. Mol. Biol., 136 (4): 723–730.

    Article  Google Scholar 

  • Tasumi S, Ohira T, Kawazoe I, Suetake H, Suzuki Y, Aida K. 2002. Primary structure and characteristics of a lectin from skin mucus of the Japanese eel Anguilla japonica. J. Biol. Chem., 277 (30): 27305–27311.

    Article  Google Scholar 

  • Tian Q, Wang W, Miao C, Peng H, Liu B, Leng F, Dai L, Chen F, Bao J. 2008. Purification, characterization and molecular cloning of a novel mannose-binding lectin from rhizomes of Ophiopogon japonicus, with antiviral and antifungal activities. Plant Sci., 175 (6): 877–884.

    Article  Google Scholar 

  • Toda M, Goto-Nance R, Muramoto K, Kamiya H. 1996. Characterization of the lectin from the skin mucus of the Kingklip Genypterus capensis. Fish. Sci., 62 (1): 138–141.

    Article  Google Scholar 

  • Toranzo A E, Santos Y, Barja J L. 1997. Immunization with bacterial antigens: vibrio infections. Dev. Biol. Stand., 90: 93–105.

    Google Scholar 

  • Tsutsui S, Tasumi S, Suetake H, Suzuki Y. 2003. Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes. J. Biol. Chem., 278 (23): 20882–20889.

    Article  Google Scholar 

  • Tsutsui S, Tasumi S, Suetake H, Kikuchi K, Suzuki Y. 2006. Carbohydrate-binding site of a novel mannose-specific lectin from fugu (Takifugu rubripes) skin mucus. Comp. Biochem. Phys iol. B Biochem. Mol. Biol., 143 (4): 514–519.

    Article  Google Scholar 

  • van Damme E J M, De Clercq N, Claessens F, Hemschoote K, Peeters B, Peumans W J. 1991. Molecular cloning and characterization of multiple isoforms of the snowdrop (Galanthus nivalis L.) lectin. Planta, 186 (1): 35–43.

    Article  Google Scholar 

  • van Damme E J M, Smeets K, Engelborghs I, Aelbers H, Balzarini J, Pusztai A, van Leuven F, Goldstein I J, Peumans W J. 1993. Cloning and characterization of the lectin cDNA clones from onion, shallot and leek. Plant Mol. Biol., 23 (2): 365–376.

    Article  Google Scholar 

  • van Damme E J M, Smeets K, Van Leuven F, Peumans W J. 1994. Molecular cloning of mannose-binding lectins from Clivia miniata. Plant Mol. Boil., 24 (5): 825–830.

    Article  Google Scholar 

  • van der Marel M, Caspari N, Neuhaus H, Meyer W, Enss M L, Steinhagen D. 2010. Changes in skin mucus of common carp, Cyprinus carpio L., after exposure to water with a high bacterial load. J. Fish Dis., 33 (5): 431–439.

    Article  Google Scholar 

  • Vasta G R, Ahmed H, Odom E W. 2004. Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates. Curr. Opin. Struct. Biol., 14 (5): 617–630.

    Article  Google Scholar 

  • Wang X W, Zhang X W, Xu W T, Zhao X F, Wang J X. 2009. A novel C-type lectin (FcLec4) facilitates the clearance of Vibrio anguillarum in vivo in Chinese white shrimp. Dev. Comp. Immunol., 33 (9): 1039–1047.

    Article  Google Scholar 

  • Zhao X Y, Yao J H, Liao Z H, Zhang H Y, Chen F, Wang L, Lu Y Q, Sun X F, Yu S Q, Tang K X. 2003. Molecular cloning of a novel mannose-binding lectin gene from Arisaema heterophyllum. Plant Sci., 165 (1): 55–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Ma  (马爱军).

Additional information

Supported by the Earmarked Fund for Modern Agro-Industry Technology Research System (No. CARS-50-G01), the General Financial Grant from the China Postdoctoral Science Foundation (No. 2015-2016), the Special Financial Grant from the China Postdoctoral Science Foundation (No. 2016T90661), the Shandong Provincial Natural Science Foundation (No. ZR2014CP001), the National High Technology Research and Development Program of China (863 Program) (No. 2012AA10A408-8), the Primary Research & Developement Plan of Shandong Province (No. 2016GSF115019), and the Shandong Agriculture Seed Project (No. 2016LZGC031)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, D., Ma, A., Huang, Z. et al. Molecular characterization and expression analysis of Lily-type lectin (SmLTL) in turbot Scophthalmus maximus, and its response to Vibrio anguillarum. J. Ocean. Limnol. 36, 508–518 (2018). https://doi.org/10.1007/s00343-017-6268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6268-1

Keyword

Navigation