Skip to main content

Transformation Hardening in Steel

  • Reference work entry
Encyclopedia of Thermal Stresses
  • 1541 Accesses

Definition

Transformation hardening is a more general term used for martensitic hardening, being one of the most important processes in heat treatment of steels. The bainitic transformation shall not be discussed in this context, although it might be considered transformation hardening. The martensitic transformation occurs if carbon or low-alloy steels are quenched sufficiently fast from the face-centered cubic austenitic (γ) phase below the martensite start temperature Ms.

Overview

The process of martensitic hardening, in particular surface hardening, is widely used in industry in order to increase the fatigue strength of components, stressed under load-free (e.g., bending) and load-bound surfaces (e.g., Hertzian pressure) as well as to improve their wear resistance [1]. In the automotive as well as aircraft industry, the majority of load-bearing components are surface hardened due to the high increase in loading capability, allowing a minimum of material usage (lightweight) or a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zoch H-W (1995) Randschichtverfestigung - Verfahren und Bauteileigenschaften. HTM 50(5):287–294

    Google Scholar 

  2. Kaufman L, Cohen M (1958) Thermodynamics and kinetics of martensitic transformations. Prog Metal Phys 7:165–246

    Google Scholar 

  3. Voehringer O (1928) Diffusionslose Umwandlung im Festkörper. Grundlagen der technischen Wärmebehandlung. Werkstofftechnische Verlagsgesellschaft mbH, Karlsruhe, p 221

    Google Scholar 

  4. Mioković T (2005) Analyse des Umwandlungsverhaltens bei ein- und mehrfacher Kurzzeithärtung bzw. Laserstrahlhärtung des Stahls 42CrMo4. Shaker, Aachen

    Google Scholar 

  5. Wayman CM (1964) Introduction to the crystallography of martensitic transformations. Macmillan, New York

    Google Scholar 

  6. Bain EC (1924) The nature of martensite. Trans AIME 70:25–46

    Google Scholar 

  7. Porter DA, Easterling KE, Sherif MY (2009) Phase transformations in metals and alloys, 3rd edn. CRC, Boca Raton

    Google Scholar 

  8. Vöhringer O, Macherauch E (1977) Struktur und mechanische Eigenschaften von Martensit. Härterei-Technische Mitteilungen 32(4):153–166

    Google Scholar 

  9. Kurdjumov G (1976) Martensite crystal-lattice, mechanism of austenite-martensite transformation and behavior of carbon-atoms in martensite. Metall Trans A, Phys Metall Mater Sci 7(7):999–1011

    Google Scholar 

  10. Kurdjumov G, Khachaturyan A (1975) Nature of axial ratio anomalies of martensite lattice and mechanism of diffusionless gamma-alpha transformation. Acta Metall 23(9):1077–1088

    Google Scholar 

  11. Moyer JM, Ansell GS (1975) The volume expansion accompanying the martensite transformation in iron-carbon alloys. Metall Trans A 6:1785–1791

    Google Scholar 

  12. Krauss G (1989) Steels. ASM, Materials Park

    Google Scholar 

  13. Bargel H-J (2011) Werkstoffkunde. 11., bearb. Aufl. Berlin: Springer Berlin

    Google Scholar 

  14. Ansell GS, Donachie SJ, Messler RW (1971) The effect of quench rate on the martensitic transformation in Fe − C alloys. Metall Trans 2:2443–2449

    Google Scholar 

  15. Maynier P, Dollet J, Bastien P (1978) Prediction of microstructure via empirical formulae based on cct diagrams in hardenability concepts with applications to steel. Metall Soc AIME, Warrendale, pp 163–176

    Google Scholar 

  16. Liu C, Zhao Z, Northwood DO, Liu Y (2001) A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels. J Mater Process Technol 113(1–3):556–562

    Google Scholar 

  17. Capdevila C, Caballero FG, Garcia De Andres C (2003) Analysis of effect of alloying elements on martensite start temperature of steels. Mater Sci Tech 19(5):581–586, Mai 1

    Google Scholar 

  18. Nishiyama Z (1978) Martensitic transformation. Academic Press, New York, NY

    Google Scholar 

  19. Yang H-S, Bhadeshia HKDH (2009) Austenite grain size and the martensite-start temperature. Scr Mater 60(7):493–495

    Google Scholar 

  20. Eckstein H-J (1971) Wärmebehandlung von Stahl. 2., durchges. Aufl. Leipzig: Dt. Verl. für Grundstoffindustrie

    Google Scholar 

  21. Patel JR, Cohen M (1953) Criterion for the action of applied stress in the martensitic transformation. Acta Metall 1(5):531–538

    Google Scholar 

  22. Radcliffe S, Schatz M (1962) The effect of high pressure on the martensitic reaction in iron-carbon alloys. Acta Metall 10(3):201–207

    Google Scholar 

  23. Videau J-C, Cailletaud G, Pineau A (1996) Experimental study of the transformation-induced plasticity in a Cr-Ni-Mo-Al-Ti steel. Le Journal de Physique IV 06(C1):C1–465–C1–474

    Google Scholar 

  24. Hornbogen E (1972) Bemerkungen zur Martensitumwandlung von Eisenlegierungen. Archiv für das Eisenhüttenwesen 43:307–313

    Google Scholar 

  25. Bolling GF, Richman RH (1969) The plastic deformation of ferromagnetic face-centred cubic Fe-Ni-C alloys. Philos Mag 19(158):247–264

    Google Scholar 

  26. Bolling GF, Richman RH (1970) The influence of stress on martensite-start temperatures in Fe-Ni-C alloys. Scripta Metallurgica 4(7):539–543

    Google Scholar 

  27. Bolling GF, Richmann RH (1970) Plastic deformation-transformation of paramagnetic f c c FE-NI-C alloys. Acta Metall 18(6):673

    Google Scholar 

  28. Richman RH, Bolling GF (1971) Stress, deformation, and martensitic transformation. Metall Trans 2(9):2451–2462

    Google Scholar 

  29. Olson GB, Cohen M (1972) Mechanism for strain-induced nucleation of martensitic transformations. J Less-Common Met 28(1):107–118

    Google Scholar 

  30. Maalekian M, Kozeschnik E (2011) Modeling mechanical effects on promotion and retardation of martensitic transformation. Mater Sci Eng A 528(3):1318–1325

    Google Scholar 

  31. Schulze V, Vöhringer O, Macherauch E (2010) Residual stresses after quenching. In: Quenching theory and technology, 2nd edn. CRC, Boca Raton, FL, p 693, IFHTSE/International Federation for heat treatment and surface engineering

    Google Scholar 

  32. Gur C, Tekkaya A (1996) Finite element simulation of quench hardening. Steel Res 67(7):298–306

    Google Scholar 

  33. Lee S-J, Lee Y-K (2008) Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics. Acta Mater 56(7):1482–1490

    Google Scholar 

  34. Simsir C, Gür CH (2008) 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution. J Mater Process Technol 207(1–3):211–221

    Google Scholar 

  35. Koistinen D, Marburger R (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7(1):59–60

    Google Scholar 

  36. van Bohemen SMC (2012) Bainite and martensite start temperature calculated with exponential carbon dependence. Mater Sci Technol 28(4):487–495

    Google Scholar 

  37. Lee S-J, Van Tyne C (2012) A kinetics model for martensite transformation in plain carbon and low-alloyed steels. Metall Mater Trans A 43(2):422–427

    Google Scholar 

  38. Denis S, Gautier E, Simon A, Beck G (1985) Stress–phase-transformation interactions – basic principles, modelling, and calculation of internal stresses. Mater Sci Technol 1(10):805–814

    Google Scholar 

  39. Inoue T, Wang Z (1985) Coupling between stress, temperature, and metallic structures during processes involving phase transformations. Mater Sci Technol 1(10):845–850

    Google Scholar 

  40. Rohde J, Jeppsson A (2000) Literature review of heat treatment simulations with respect to phase transformation, residual stresses and distortion. Scand J Metall 29(2):47–62

    Google Scholar 

  41. Troell E, Kristoffersen H, Lövgren M, Strand N-E (2010) Influence on quenchant performance during induction hardening. Heat Process 8(4):329–334

    Google Scholar 

  42. Miokovic T, Schulze V, Vöhringer O, Löhe D (2006) Prediction of phase transformations during laser surface hardening of AISI 4140 including the effects of inhomogeneous austenite formation. Mater Sci Eng A 435–436:547–555

    Google Scholar 

  43. Jones KT, Newsome MR, Carter MD (2005) Case study comparison of distortion for an AGMA quality class 10 bevel gear gas carburized, versus contour induction hardening. In: Proceedings of 1st international conference of distortion engineering, Bremen, 14–16 September. 1(1): 213–23

    Google Scholar 

  44. Denis S, Archambault P, Aubry C, Mey A, Louin JC, Simon A (1999) Modelling of phase transformation kinetics in steels and coupling with heat treatment residual stress predictions. Le Journal de Physique IV 09(PR9):10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Schwenk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Schwenk, M. (2014). Transformation Hardening in Steel. In: Hetnarski, R.B. (eds) Encyclopedia of Thermal Stresses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2739-7_464

Download citation

Publish with us

Policies and ethics